

Supersonic Post-Combustion Inertial CO₂ Extraction System Bench Scale Project Status Update

2016 NETL CO₂ Capture Technology Meeting Pittsburgh, PA 10 August 2016

Anthony Castrogiovanni, Ph.D. Vladimir Balepin, Ph.D. Andrew Robertson Bon Calayag

• Funding

- NETL: \$2,999,673
- Cost Share: <u>\$ 749,918</u>
- Total: \$3,749,591
- Project Performance Dates
 - 1 Oct 2014 30 Sep 2017
- Project Participants
 - ATK & ACENT Laboratories
 - Ohio State University
 - EPRI
 - NYSERDA and NYS-DED

- Project Objectives
 - Demonstrate inertial CO₂ extraction system at bench scale
 - Develop approaches to obtain condensed CO₂ particle size required for migration
 - Demonstrate pressure recovery efficiency of system consistent with economic goals
 - Demonstrate CO₂ capture efficiency

ICES Technology Background

Thermodynamics of ICES

SaturationLine

Gas Phase

Partial Pressure of CO₂

during Isentropic **Expansion in Supersonic**

 $(p_0=2bar, T_0=300K)$

250

Nozzle

Liquid Phase

Isentropic Expansion of 14mol% CO₂ in N₂ Relative to Phase Diagram of CO₂

Triple Point

Mach Number

200

150

temperature (T) and velocity (v) in a convergingdiverging nozzle

Temperature [K] Low static pressure and temperature in supersonic nozzle causes CO_2 to precipitate as a solid – need to remove before diffusing back to low speed

100

Solid Phase

Post

0.001

50

Region of incipient

condensation

12.0

10.0

8.0

6.0

4.0

2.0

0.0

300

laboratorie

Advantages	Challenges
No moving parts, chemicals/additives or consumable media	Maximization of CO_2 particle size with limited residence time
Inexpensive construction (sheet metal, concrete)	Optimization of flowpath pressure recovery
Small footprint (current bench scale test article is 250kW, 3" x 24" x 96"	CO_2 purity (all condensable material will be removed with CO_2)
"Cold sink" availability in solid CO_2	Solid CO ₂ processing
Costs primarily driven by flue gas compression	Minimization of "slip gas" removed with solid CO_2

Summary of Previous Results

Principal conclusion of this effort was that CO_2 particles >2.5µm are required for efficient operation - need to control particle size generated

Program Plan for Current Effort

• Year 1

- Lab-scale tests (OSU) to develop understanding of factors controlling particle size and methods to increase
- Bench scale tests at ATK to demonstrate capture efficiency and diffusion with surrogate CO₂ injection (liquid throttle of CO₂ to produce controlled particle size)
- <u>Success criteria:</u> Demonstrate 50% capture, show path to pressure recovery required
- Year 2 (as re-baselined)
 - Demonstrate capability to create $\sim 3\mu m + CO_2$ particles in subsonic region via precooling
 - Update previous techno-economic analysis to incorporate current flue gas compression and heat exchange requirements
 - <u>Success criteria:</u> CO₂ particles can be seen at the exit of the subsonic unit, visual observations and particle measurements confirm formation of particles of migrate-able size (e.g. > 3 microns), updated ICES configuration and heat & mass balance analysis shows path to viable system performance
- Year 3 (currently TBD pending Year 2 results)
 - Integrated bench-scale testing with capture + diffuser
 - <u>Success criteria:</u> 75% capture with path to 90%, path to full scale pressure recovery

Program Update

- Orbital ATK
- Thermodynamics of the ICES process has been modeled using higher-fidelity tools
 - Enabled by EPRI-developed extended Peng-Robinson model for state parameters including solid phase
- Results show lower pressure recovery than previously predicted (more compression required)
- Parametric study shows that flue gas compression ratios in the range of 5-8 are required if coupled with flue gas precooling, based on heat exchange with captured CO_2
 - Previous techno-economic analysis assumed a compression ratio of 2.5
 - Lower compression ratios possible with flue gas dilution with air looking for optimum balance of overall energy input
- Requirement for large condensed particles ($\sim 3\mu m$ +) previously drove us to investigate seeding of flow with captured CO₂ or other particles to serve as nucleation media
 - Analysis shows that additional energy required to accelerate added mass to high speed is significant (assuming kinetic energy not recovered)
- **Pre-cooling using captured CO₂ as "cold sink" is new baseline** –subsonic condensation of trace water or small quantity of CO₂ results in "in-situ" seeding
 - Subsonic/transonic condensation known to produce larger particles
 - Pre-cooling challenged by conversion of captured CO_2 kinetic energy to heat

Updated System Schematic and Trade Results

Flue

gas

 \bigcirc

Posimetric Compressor

CASE		Α	В	С	D	E	F	G	Н	I	J
Tambient	С	15	15	15	15	15	15	5	-5	5	-5
KE converted to heat in CO2 stream	%	0%	50%	100%	50%	50%	100%	50%	50%	50%	50%
Dilution	%	0%	0%	0%	50%	100%	50%	50%	50%	100%	100%
Compressor pressure ratio PR		6.9	8.2	10	5.0	3.6	5.2	4.8	4.47	3.8	3.6
Compressor Power	kJ/kg_tot	251	281	316	254	254	262	236	216	235	219
Impulse Turbine Power	kJ/kg_tot	-36.1	-20.0	0.0	-12.4	-9.0	0.0	-11.7	-11.0	-8.5	-7.9
V at capture plane	m/s	597	628	669	607	597	616	589	570	578	560
Delta Tsat upstream of ICES Nozzle	С	-2	15	38	52	71	57	42	33	61	52

8

Current Focus on Subsonic Test Article

Test Article in Orbital ATK Lab

CFD Results - Temperature

ACEn 12

• A preliminary Techno-economic assessment by WorleyParsons (WP) was carried out in 2013. Key efficiency/economic numbers are provided in the table below:

Metric	Case 11 Case 12, Amine Plant		ICES Plant	
CO ₂ capture	no	yes	yes	
Net plant efficiency (HHV basis)	39.3%	28.4%	34.5%	
COE % increase	base	77%	42%	
Parasitic Load	5.5%	20.5%	7.3%	
Cost per tonne of CO ₂ captured	NA	US\$ 62.8	US\$ 41.8	
Cost per tonne of CO ₂ avoided	NA	US\$ 90.7	US\$ 48.4	

- Updated process conditions have been provided to EPRI and WP and an updated TEA is in progress
- Anticipate cost per tonne of CO₂ captured >\$50 tonne due to increased compression requirements

ICES Plant Layout and Footprint

laboratorie

ICES footprint of ~8k m² compares to 20k to 30k m² for an amine plant of similar capacity. ICES nozzle and compressor stacking can further reduce footprint by 30-40%.

Project Schedule

WBS 🚽	Task Name 👻	Start 🖕	Finish 🚽
1	NETL-ICES Development Program	10/1/13	9/1/17
1.1	Program Management	10/1/13	9/1/17
A	Authorization to Proceed	10/1/13	10/1/13
1.1.1	MS 2: Kickoff Meeting	10/28/13	10/28/13
1.1.2	Program scope, schedule and budget tracking	10/1/13	6/29/17
1.1.2.1	Earned value tracking	10/1/13	6/29/17
1.1.2.2	Update Budget Period 1 Project Management Plan (PMP)	10/1/13	10/28/13
1.1.2.3	MS1: Updated BP1 PMP complete	10/28/13	10/28/13
1.1.2.4	Update Budget Period 2 Project Management Plan (PMP)	1/5/15	1/27/15
1.1.2.5	MS4: Updated BP2 PMP complete	1/27/15	1/27/15
1.1.2.6	Update Budget Period 3 Project Management Plan (PMP)	8/29/16	9/12/16
1.1.2.7	MS6: Updated BP3 PMP complete	9/12/16	9/12/16
1.1.3	Risk Identification, assessment and mitigation planning	10/1/13	9/29/16
1.1.4	• Quarterly Reporting and Reviews	1/10/14	9/30/16
1.1.5	Technical Reviews	1/10/14	9/30/16
1.1.6		8/14/17	9/1/17
1.2		10/1/13	9/29/14
1.3	[®] Analytical and Computational Investigations	10/1/13	9/29/14
1.4	Bench-scale Capture and Diffuser Testing	10/1/13	12/18/14
1.4.1	E Capture duct (with solid CO2 injection)	10/1/13	3/17/14
1.4.2	Diffuser Characterization	12/24/13	12/8/14
1.4.2.1	Design Hardware	12/24/13	3/31/14
1.4.2.2	Fab and Install Hardware	4/1/14	6/9/14
1.4.2.3	Test	6/10/14	12/8/14
1.4.2.4	Analyze Data and Benchmark CFD	11/4/14	12/8/14
1.4.3	MS3: Capture Duct / Diffuser demonstration complete	12/18/14	12/18/14
1.5	Bench-scale Condensation/Growth Testing	1/5/15	8/29/16
1.5.1	Instrumentation Updates	1/5/15	6/23/16
1.5.2	CFD and Condensation Modeling	3/11/15	6/30/15
1.5.3	Subsonic Condensation ICES Analysis and Design	4/15/16	7/14/16
1.5.4	Supsonic Condensation ICES Testing	5/13/16	8/9/16
1.5.5	Test additional conditions as needed	8/9/16	8/23/16
1.5.6	MS5: Bench scale condensation/growth testing complete	8/29/16	8/29/16
1.6	* Integrated System	8/29/16	8/25/17
1.7		8/29/16	8/25/17
1.8	Commercialization Pathways	8/29/16	8/14/17

- MS 1. Updated BP1 PMP complete
- MS 2. Kickoff meeting complete
- MS 3. Capture duct/diffuser demonstration complete
- MS 4. Updated BP2 PMP complete
- MS 5: Bench scale condensation/growth testing planned 8/29/2016

Summary

- ICES Technology continues to prove challenging but still holds promise as an alternative to adsorbents and membranes
- Current NETL effort focused on solving key technical challenge of particle size
 - Re-baselined program plan includes pre-cooling of flue gas using captured CO₂ "cold sink" to enable some subsonic condensation
 - Update to techno-economic analysis in progress

Acknowledgements

Orbital ATK

• NETL

- Andy O'Palko
- Lynn Brickett

Orbital ATK

- Florin Girlea
- Vincenzo Verrelli
- Michele Rosado
- Dr. Daniel Bivolaru

• ACENT Labs

- Dr. Pasquale Sforza
- Robert Kielb
- Alan Mason
- Randy Voland

Ohio State University

- Professor Barbara Wyslouzil
- Dr. Shinobu Tanimura

• EPRI

- Dr. Abhoyjit Bhown
- Adam Berger
- Yuqi Wang
- NYSERDA
- NYS-DED

